Spatial squeezing of plasmonic modes on disordered metallic films

Rémi Carminati

Institut Langevin, ESPCI ParisTech, CNRS, Paris, France

Alexandre CAZE Etienne CASTANIE Da CAO

Romain PIERRAT Valentina KRACHMALNICOFF Yannick DE WILDE
Decoding the title

• Scattering of visible (or near IR) light by disordered metallic samples

• Peculiar optical response due to interplay between material resonances (plasmons) and multiple scattering

• Address the spatial localization of modes
 LDOS fluctuations
 Spatial coherence
The colors of gold

Semi-continuous gold films on a glass substrate

\[
f = 30\% \quad 49\% \quad 67\% \quad 79\% \quad 82\% \quad 89\% \quad 99\%
\]

V.M. Shalaev, Nonlinear Optics of Random Media (Springer, 2000)
Low surface fraction

$f = 30\%$

Particle surface-plasmon resonance

$\text{Re} \varepsilon(\omega_{sp}) = -2$
Continuous film

Extended surface-plasmon

f = 99%
Intermediate regime: Giant intensity fluctuations

Localized and delocalized modes

Localized Luminous
$F_i = 0.07$

Delocalized Luminous
$F_i = 0.2$

Delocalized Dark
$F_i \approx 10^{-9}$

Localized Dark
$F_i \approx 10^{-9}$

« Inhomogeneous localization »

Stockman, Faleev, Bergman, PRL 87, 167401 (2001)
Near-field speckle correlations show different regimes

SNOM measurements of near-field intensity
Seal, Sarychev, Noh, Genov, Yamilov, Shalaev, Ying, Cao, PRL 95, 226101 (2005)
Outline

- LDOS fluctuations and localized plasmonic modes
- Radiative versus non-radiative modes
- Spatial coherence and the extent of plasmonic modes
LDOS fluctuations and localized plasmonic modes

Radiative versus non-radiative modes

Spatial coherence and the extent of plasmonic modes
Probing LDOS in optics: Fluorescence decay rate

Probability of being excited at time t

$P(t) \approx \exp(-\Gamma t)$

Spontaneous decay rate

$\Gamma = \frac{1}{\tau}$

Perturbation theory

$\Gamma = \frac{2}{\hbar} \mu_0 \omega^2 \left| \mathbf{p}_{ge} \right|^2 \text{Im} \left[\mathbf{u} \cdot \mathbf{G}(\mathbf{r}_0, \mathbf{r}_0, \omega) \mathbf{u} \right]$

Particular case: VACUUM

$\Gamma_0 = \frac{\omega^3}{3\pi \varepsilon_0 \hbar c^3} \left| \mathbf{p}_{ge} \right|^2$

(Einstein coefficient for spontaneous emission)
Decay rate and LDOS

\[\Gamma = \frac{2}{\hbar} \mu_0 \omega^2 \left| p_{ge} \right|^2 \text{Im} \left[\mathbf{u} \cdot \mathbf{G}(\mathbf{r}_0, \mathbf{r}_0, \omega) \mathbf{u} \right] \]

is also very often written as
(Fermi’s golden rule)

\[\Gamma = \frac{\pi \omega}{\varepsilon_0 \hbar} \left| p_{ge} \right|^2 \rho_u(\mathbf{r}_0, \omega) \]

Local Density of States (LDOS)

\[\rho_u(\mathbf{r}_0, \omega) = \frac{2 \omega}{\pi c^2} \text{Im} \left[\mathbf{u} \cdot \mathbf{G}(\mathbf{r}_0, \mathbf{r}_0, \omega) \mathbf{u} \right] \]

\[\frac{\Gamma}{\Gamma_0} = \text{change in the LDOS} \]

Changes in spontaneous decay rate (lifetime)
probe changes in the LDOS
Probing LDOS distributions on disordered metal films

Statistical distributions of Γ (LDOS)

- $f = 30\%$
- $f = 82\%$

$\lambda = 605$ nm

Decay rate Γ (ns$^{-1}$)

Occurrences

Fluorescence decay

t (ns)

$\Gamma = 0.40$ ns$^{-1}$
$\Gamma = 0.24$ ns$^{-1}$
LDOS fluctuations

\[
\frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} - 1
\]

Fractal and Euclidian clusters

\(f = 82\% \)
The peak reveals spatially localized modes

\[\frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} - 1 \]

The peak in the LDOS reveals spatially localized plasmon modes

Qualitative analysis (inverse participation ratio)

Mode extent \(\xi \)

\[\frac{1}{S} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \approx \frac{1}{\xi^2} \]

Krachmalnicoff, Castanié, De Wilde, Carminati, PRL 105, 183901 (2010)
LDOS fluctuations and localized plasmonic modes

Radiative versus non-radiative modes

Spatial coherence and the extent of plasmonic modes
Numerical simulations (1)

Generating synthetic films

$f = 20\%$

$f = 50\%$

$f = 75\%$

Euclidian and fractal clusters

Numerical simulations (2)

Calculated LDOS maps (volume integral method)

Gold
\(\lambda = 780 \text{ nm} \)

\[
E(r) = E_0(r) + \frac{\omega^2}{c^2} \int [\epsilon(r', \omega) - 1] G_0(r, r', \omega) E(r') d^3 r'
\]

Distance dependence of LDOS distributions

Experiment

\[\frac{\Gamma}{\Gamma_0} \]

Numerical simulations

\[\text{Occurrences} \]

Normalized decay rate

\[\lambda = 607 \text{ nm} \]
Non-radiative modes dominate at short distance

\[\Gamma = \Gamma_{NR} + \Gamma_R \]

\[\langle \Gamma/\Gamma_0 \rangle \]

\[\text{Var}(\Gamma/\Gamma_0) \]

This is confirmed by calculated LDOS maps

$$\rho = \rho_{NR} + \rho_{R}$$
Estimating the size of hot spots

\[K \approx \frac{2\pi}{\Delta x} \gg \frac{2\pi}{\lambda} \]

Evanescent modes \(\exp(-Kz) \)

Decay length \(1/K \approx 10 \text{ nm} \)
\(\Delta x \approx 60 \text{ nm} \)

LDOS fluctuations and localized plasmonic modes

Radiative versus non-radiative modes

Spatial coherence and the extent of plasmonic modes
Beyond LDOS - spatial coherence

- The LDOS describes the number of modes contributing at a given point.
- How could we describe the connection between two points?

LDOS ρ/ρ_0

Cross Density Of States (CDOS)

- Density Of States (DOS)
 \[\rho(\omega) = \sum_n \delta(\omega - \omega_n) \]

- Local Density Of States (LDOS)
 \[\rho(r, \omega) = \sum_n |e_n(r)|^2 \delta(\omega - \omega_n) \]
 \[\rho(r, \omega) = \frac{2\omega}{\pi c^2} \text{Im} [\text{Tr} G(r, r, \omega)] \]

- Cross Density Of States (CDOS)
 - Connecting two points at frequency \(\omega \)
 \[\rho(r, r', \omega) = \sum_n e_n(r) \cdot e^*_n(r') \delta(\omega - \omega_n) \]

- CDOS in terms of Green's function
 \[\rho(r, r', \omega) = \frac{2\omega}{\pi c^2} \text{Im} [\text{Tr} G(r, r', \omega)] \]
Ex: spatial coherence of thermal surface plasmons

Field spatial correlation

\[\rho = |\mathbf{r} - \mathbf{r}'| \]

\[\left\langle E_i(\mathbf{r}, \omega) E_j^*(\mathbf{r}', \omega) \right\rangle \propto \text{Im} G_{ij}(\mathbf{r}, \mathbf{r}', \omega) \]

Rytov, Kravtsov and Tatarskii,

CDOS describes spatial squeezing of plasmonic modes

Topography

LDOS

CDOS

Gold $\lambda = 780$ nm

The width of the CDOS defines the spatial coherence length.

The coherence length describes the overall spatial squeezing of eigenmodes.
• Disordered (fractal) metallic films combine interesting physics and ease of fabrication

• Spatial coherence approach describes the overall spatial squeezing of plasmonic modes in the resonant regime (consistent with "inhomogeneous localization" picture)

• Wideband resonant system
 Large (> µm) or reduced (<100 nm) spatial coherence
 Radiative and non-radiative modes
 Large Purcell factors

 2D platform for basic nanophotonics experiments
Near-field speckle fluctuations

Near-field intensity fluctuations around the percolation threshold

Seal et al., PRL 97, 206103 (2006)

\[
\frac{\langle I^2 \rangle}{\langle I \rangle^2} - 1
\]

\[\lambda = 633 \text{ nm}\]

\[\Delta p = p - p_c\]
Near-field intensity: A strongly fluctuating pattern

Photo Electron Emission Microscopy (PEEM)

Qualitative analysis - Inverse participation ratio

Inverse participation ratio measures spatial extent of eigenmodes

\[R_{IP} = \frac{\int |E(r)|^4 \, d^2r}{\left(\int |E(r)|^2 \, d^2r \right)^2} \]

Example: Localized mode on area A with constant amplitude

\[R_{IP} = \frac{1}{A} \]

Assumption: At a given point and given frequency, only one mode contributes

\[\rho(\omega, r) \propto \sum_n |E_n(r)|^2 \delta(\omega - \omega_n) \approx \frac{|E(r)|^2}{\Delta \omega} \]

LDOS fluctuations measure \(R_{IP} \)
and therefore the spatial extent of plasmon modes

\[\frac{1}{S} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} = R_{IP} \approx \frac{1}{\xi^2} \]
Thermal-radiation STM maps plasmon interferences

Y. De Wilde (ESPCI)