Probing human brain function with (time-resolved) diffusing-wave spectroscopy

Thomas Gisler
Universität Konstanz, Fachbereich Physik, 78457 Konstanz, Germany

1. Optical imaging of brain function
2. Diffusing-wave spectroscopy
3. Slow functional signals
4. Transient signals
Acknowledgements

Markus Belau
Gregor Dietsche
Franck Jaillon
Jun Li
Annabelle Medebach
Christian Ortolf
Markus Ninck
Markus Untenberger

Konstanz
Physics

Diana Iftime
Leonie Koban
Johanna Kissler
Brigitte Rockstroh
Thomas Elbert

Konstanz
Psychology

Sergey Skipetrov
Grenoble

Funding

Center for Applied Photonics (CAP) Konstanz
Deutsche Forschungsgemeinschaft (DFG)
Landesstiftung Baden-Württemberg
Zukunftskolleg Universität Konstanz
Why brain imaging?

cognitive processes
 feeling
 thinking
 acting

representations in the brain
 spatio-temporal activation patterns

current issues:
 - how does the brain process cognitive tasks?
 - physiological origins of psychological disorders
 - post-trauma rehabilitation
 - intensive care (stroke, ...)

● in-vivo-, non-invasive methods

sensoric homunculus:
Optical methods for measuring functional brain activity

- low cost (relative to MRI, ...)
- portable
- non-ionizing radiation
- non-invasive
- functional contrast
- extrinsic markers: fluorophores
- intrinsic markers:
 - hemoglobin, cytochrome, water, ...
- continuous measurements

- laser Doppler
- fluorescence imaging
- reflectance imaging
 ...
Optical imaging through the skull?

challenges:

multiple light scattering

absorption

- scalp, skull
- cell membranes
- vesicles
- mitochondria
- blood vessels
- hemoglobin
- melanin

near infrared (NIR): “optical window”

● reduced penetration depth, spatial resolution
Putting multiple scattering to work

illumination with coherent light:

\[\text{Laser} \]

autocorrelation function of scattered field:

\[g_1(\tau) = \int_{L_o}^{\infty} ds \ P(s) \left[g_1^{(1)}(\tau) \right]^{\frac{s}{L}} \approx \exp \left(-2 \left(\frac{L}{l_s} \right)^2 k_0 D\tau \right) \]

\[\text{sample thickness} \]
\[\text{transport mean free path length} \]

→ DWS is sensitive to nanometer displacements

G. Maret, P. E. Wolf, Z. Phys. B 65, 409 (1987);
DWS from motor cortex activation

motor cortex stimulation:

finger opposition exercise:
100s activation, 90s rest

C3 response:

contralateral (right hand):
stimulation vs. baseline

enhanced dynamics during activation

Motor cortex activation: group study

11 right-handed subjects:

- **cortical diffusion coefficients**
- **scalp diffusion coefficients**

![Graph showing relative cortical and scalp diffusion coefficients]

- *hemispheric asymmetry*
- *40% functional acceleration of cortical dynamics*

Enhancing the sensitivity: Multispeckle correlation

average DWS signals from equivalent, but independent, speckles:

- Multimode fiber
- Few-mode fibers
- Laser
- Avalanche photodiodes
- PC
- Autocorrelators
- 32-channel autocorrelator
- Multifiber bundle
- Avalanche photodiodes
DWS signals from deeper cortical areas: visual cortex

stimulation:
50s full-field flickering
at 8Hz

occipital cortex
response:

visual cortex signals are small:
~2% in $g^{(1)}(\tau)$

Steady-state flickering: discriminate signal from cortex?

9 right-handed subjects:

data analysis:

average decay time

\[\tau_d = \int_{\tau_1}^{\tau_2} g_b^{(1)}(\tau) \, d\tau \]

\(p = 0.028 \)
\(p = 0.021 \)
\(p = 0.075 \)
\(p = 0.064 \)
\(p = 0.419 \)

long-distance probe discriminates signal from cortex

Visual stimulation: origin of functional DWS signal?

functional signals:

long distance probe:

-\(\Delta \) decay time: -3.8% / -3.0%
-\(\Delta \) transmission: -2.49% / -2.26%

PET:

-\(\Delta \) rCBF ~ +68%
-\(\Delta \) CBV ~ +21%

heart rate:

+1%
not significant

* functional acceleration of DWS decay is consistent with regional cerebral blood flow increase

F. Jaillon et al.,
Opt. Express 15, 6643 (2007)
Transient functional signals

Experiment design:
- 30 s baseline (black screen)
- 60 s full-field 7.5 Hz flickering
10 blocks

Group average of large-distance data (n=5):

- Increased τ_d (+6%)
- Decreased τ_d (-3%)

biphasic dynamics

transient slowing-down of dynamics for short stimulation

Transient signals: averaged response

experiment design:
- 8.2 s checkerboard flickering, 7.5 Hz
- 8-12 s randomized interblock intervals
- 90 blocks

group average of large srd data (n=10):

![Graph showing relative value over decay time and count rate with short stimulation blocks reducing dynamics](image)

\[\Delta = 1.2 \% \quad p = 0.04 \]
\[\Delta = 0.15 \% \quad p = 0.21 \]

Mapping of transient hemodynamic signal

experiment design:
- 8.2s checkerboard flickering, 7.5 Hz
- 8-12s randomized interblock intervals
- 90 blocks

single subject data

transient blood flow change is localized

Conclusions

Diffusing-wave spectroscopy:
- intrinsic contrast
- fast (26 ms resolution)
- highly sensitive to function
- 1 cm resolution
- continuous
- insensitive to motion artefacts
- insensitive to magnetic and electric fields
- portable

method for measuring functional brain activity

Outlook:
- quantitative understanding of DWS signals
- size and shape of volume probed
- improved spatial resolution, tomography
- functional signals in single subjects
- optimization of probe placement
- fast signals ↔ electrical activation