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L._ — \ o= ‘@ .; e A large particle moves through a sea of small particles. On the microscale, all particle collisions are
e — elastic. However, on the macroscale, where only the large particle is properly resolved, dissipative
forces and fluctuating random forces are observed. These forces are connected by a fluctuation—
dissipation theorem proved in two different ways, first via statistical mechanics, and second from
fundamental classical mechanical principles of momentum and energy conservation. The novel
classical mechanics proof elucidates the relation between micro- and macroscale behaviors, and
offers new insights into the physics behind the fluctuation—dissipation result. © 2007 American
Association of Physics Teachers.
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When a particle immersed in a dissipative environment and subject to thermal noise reaches an
equilibrium state, a relation between the relative strength of friction and noise must hold. Such
relations go under the name “fluctuation-dissipation theorem”, and Brownian motion exemplifies
one of the simplest cases.




The fluctuation-dissipation theorem

R. KUBO
Department of Physics, University of Tokvo, Japan

Contents
Page
1. Introduction . . . . . . . . . . 255
2. Einstein relation . . . . . . 257
3. Classical Langevin equation and the random force . . . . 258
4. Generalized Langevin equation . . . . . . . 260
S. Linear response theory . . . . . . . 263
6. Correlations and correlation spectra . . . . . . 266
7. The fluctuation—dissipation theorem . . . . ) . 268
8. Force correlations . . . . . . . . 270
9. Correlation matrix formulanon . . . . 273
10. Moments, sum rules and continued fractmn expansmn . . . 276
11, Density response, conduction and diffusion . . . . . 278
References . . . . . . . . . . . 283

Abstract. The linear response theory has given a general proof of the fluctuation—
dissipation theorem which states that the linear response of a given system to an
external perturbation is expressed in terms of fluctuation properties of the system
in thermal equilibrium. This theorem may be represented by a stochastic equation
describing the fluctuation, which is a generalization of the familiar Langevin
equation in the classical theary of Brownian motion. In this generalized equation
the friction force becomes retarded or frequency-dependent and the random force
is no more white. Theyv are related to each other by a generalized Nyquist theorem
which is in fact another expression of the fluctuation—dissipation theorem. This
point of view can be applied to a wide class of irreversible process including
collective modes in many-particle systems as has alreadv been shown by Mori.
As an illustrative example, the density response problem is briefly discussed.
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Thus random impacts of surrnunding molecules generall}; cause two kinds of

effect: firstly, they act as a random driving force on the Brownian particle or the
mirror to maintain its incessant irregular motion, and, secondly, thev give rise to
the frictional force for a forced motion. The first is the systematic part of the effect
and the second is the random part. This in turn means that the frictional force and
the random force must be related, because both come from the same origin. This
internal relationship between the svstematic and the random parts of micrescopic
forces is, in fact, a very general matter, which is manifested in the so-called
fluctuation—dissipation theorem.
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The noise correlation theorem :
the wave approach
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The noise correlation theorem :
the wave approach
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The noise correlation theorem :
Interpretation of the volume integral
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The noise correlation theorem :
Interpretation of the surface integral

If the attenuation parameter k=0
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Simple interpretation with timeeversal cavity (Fink et al.)

Diffraction pattern in(k R,) at the focal point
4pR;,

Surface 3s taken in the far field of themedium heterogeneities

—

D(Gy) ~ ik G,

- Ay
Gp__f(xﬁ,x,w) GW. (Xp.X, )
St vk

G ixux0) G (XX, @)

* .W x
Gp-Gp = Z*EﬁGJxG& dS
S

Thislast formulation of the correlation theorem
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Another formulation of the noise correlation theorem

If the attenuation parameter K =0
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Noise correlation and the fluctuation-dissipation theorem

Noise in very large volume
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At thermodynamical equilibrium, Y ﬁ/ IS a constant proportional
to an effective temperature from an equipartition principle
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In order to conserve energy delivered by noise sources, a specific k (o) ‘é
attenuation is necessary at the thermodynamical equilibrium
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