Introduction - logistic map Results: patterns in double-slit experiments

The logistic map, defined by the iterative scheme u,11 = f(u,) with the | [ATMe
function

f(u) = cu(l —u) (1) B -

and a starting value ug taken from the interval [0, 1], constitutes a most
remarkable model system which has provided deep insights into nonlinear R

dynamics. The simplicity of this quadratic map contrasts with the richness . e e

of its dynamical behavior; for most values of the parameter ¢ between 3.57 . I

and 4 the sequence {u,} is chaotic. The famous universal constant . Vo, O et
0 = 4.6609. .. which emerges as a limit when the ratio of the length of
c-intervals between consecutive period doublings is taken, has been | i b N e
discovered while investigating this map.

Figure: Contour plots of I(y) = G(y;y) for c = 3.6, 3.7, and 3.8, brighter regions indicate
higher values of 1). The area covered here ranges from x = 0 to x = Ny = 250 horizontally,
Coupled map lattices and fromy = 0 to y = Ny vertically. The double slit is located at x = N3 /3.

Coupling of the above maps leads to extended dynamical systems which
form a subclass of the so-called coupled map lattices (CMLs).
Their properties:

» temporal and spatial coordinates are discrete;
» dependent variable is allowed to take on continous values;

» can be viewed as generalizations of cellular automata, or as classical fields
defined on a grid;

» have been used to study:
> pattern formation out of equilibrium;
> spatiotemporal chaos in extended dynamical systems;
> Rayleigh-Benard convection;
> dynamics of boiling;
> formation and dynamics of clouds;
> crystal growth processes;

> hydrodynamics of two-dimensional tlows. Results: fringes for intermediate values of nonlinear parameter

y

Figure: Plots of I(y) = G(y;y) for c = 3.2, 3.3, and 3.4 for x = N, /3.

Objective

We demonstrate that simple coupled map lattices based on logistic maps
exhibit features associated with coherence, in the sharply defined sense of
optics and quantum physics of coherent many-particle systems.

The model

A two-dimensional square lattice with grid points labeled (x,y), with x and
y being integer numbers, and t = 0,1, 2,3, ... is a discretized and
dimensionless time variable. A field 1)(x,y; t) which evolves in time
according to:

P(x,y;t+1) = (1 — 4d)f(y(x,y, t))
+d[f(p(x + 1,yi 1)) + f(w(x — 1,y;t))

+ 10y + 1it) + F(W(xy — 1Y),

Wel limit ourselves to the case of almost maximal d, that is d =~ 0.25.

y

Description of numerical experiments

» Grid points extend from x = 0 to x = Nj in x-direction and fromy = 0
to y = Ny in y-direction, with N7y = 300 and N, = 250.

» Dirichlet boundary condition 1» = 0 for both y = 0 and y = N>

» Boundary value ¥» = 0.9 its left margin x = 0 is enforced.

» The value of ¥ at all other lattice points is initially set to zero. Figure: Plots of I(y) = G(y;y) for ¢ = 3.8, 3.9, and 4.0 for x = N, /3.

» Absorbing boundary condition near x = Nj.
» 1) = 0 boundary condition at xq;t = N2/3 for y < N»/5, for
2N, /5 <y < 3N3y/5, and for y > 4N, /5 to simulate double-slit

experiment.

Conclusions

» Notions of correlation and coherence, precisely as used in optics and
quantum many-body physics, can be meaningfully applied to coupled
ogistic map lattices, which constitute nonlinear diffusive systems.

At Xscreen = 2N2/3 = 170 we place a “screen”, that is, we collect the
values of ¥ (Xscreens ¥; t) = @(y; t) at this x coordinate.

» Local chaos by no means obstructs genuine large-scale coherence.

Coherence matrix » Interference patterns, not being a simple sum of diffractive patterns, can
and do appear in such systems.

he normalized coherence matrix is used to investigate the properties of 1):
G(y,y') = (d(y; t)p(y'; 1))
| Tr ({(p(yi ) p(y' 1))

» But there are essential conditions:

> nonlinearity must be sufficiently strong;
> diffusion must be very fast.
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