C_0 speckle correlation and near-field interactions in
strongly scattering media

Workshop “Correlations, Fluctuations and Disorder”, Grenoble, France

Romain Pierrat, Alexandre Cazé and Rémi Carminati

Institut Langevin, ESPCI ParisTech, CNRS

December 14, 2010

Picture ©Enrique Sahagun
The Langevin Institute

Institut Langevin
ESPCI ParisTech
10 rue Vauquelin
75005 Paris, France

The group “Physical Optics and Waves Theory”

Permanent staff

Rémi Carminati
Professor
Group leader

Romain Pierrat
CNRS Researcher

Post-docs

Valentina Krachmalnicoff

Rémi Vincent

PhD students

Étienne Castanié
Alexandre Cazé
Mohamed El Abed
We study the LDOS statistics in a strongly disordered system

\[
\rho(\omega) = \sum_k \delta(\omega - \omega_k)
\]

\[
\rho(r_0, \omega) = \sum_k \|E_k(r_0, \omega)\|^2 \delta(\omega - \omega_k)
\]
We study the LDOS statistics in a strongly disordered system.

Density of States (DOS)

\[\rho(\omega) = \sum_k \delta(\omega - \omega_k) \]

Local Density of States (LDOS)

\[\rho(r_0, \omega) = \sum_k \|E_k(r_0, \omega)\|^2 \delta(\omega - \omega_k) \]

Green function

\[E(r) \propto \hat{G}(r, r_0, \omega) p \]

LDOS in terms of Green function

\[\rho(r_0, \omega) \propto \mathcal{I} \left[\text{Tr} \hat{G}(r_0, r_0, \omega) \right] \]
In vacuum

\[\Gamma_0 \propto \mathcal{I} \left[\text{Tr} \, G_0(r_0, r_0, \omega) \right] \]

Relationship 1

LDOS = Spontaneous decay rate

The Purcell effect

In vacuum

\[\Gamma_0 \propto I \left[\text{Tr} \ G_0(r_0, r_0, \omega) \right] \]

Emitter (molecule)

With an environment

\[\Gamma \propto I \left[\text{Tr} \ G(r_0, r_0, \omega) \right] \]

Emitter (molecule)

Scattering medium

Relationship 1 \[\text{LDOS} = \text{Spontaneous decay rate} \]

Artistic view

Picture ©Enrique Sahagun
Relationship 1 \[\text{LDOS} = \text{Spontaneous decay rate} \]
Experiments: direct access to the LDOS

Observations of decay rates fluctuations

- Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium

- Observation of Spatial Fluctuations of the Local Density of States in Random Photonic Media

- Fluctuations of the local density of states probe localized surface plasmons on disordered metal films

LDOS fluctuations \(\propto \) the \(C_0 \) correlation

\[
\frac{\langle I(u) I(u') \rangle}{\langle I(u) \rangle \langle I(u') \rangle} = C_1 (u \cdot u') + C_2 (u \cdot u') + C_3 (u \cdot u')
\]

short range \hspace{1cm} long range \hspace{1cm} long range

\[
\left\langle \frac{\rho^2}{\langle \rho \rangle^2} \right\rangle - 1 = C_0
\]

Relationship 2: LDOS fluctuations \(\propto \) C₀ speckle correlation

\[
\frac{\langle I(u) I(u') \rangle}{\langle I(u) \rangle \langle I(u') \rangle} = C_1 (u \cdot u') + C_2 (u \cdot u') + C_3 (u \cdot u')
\]
short range \hspace{2cm} long range \hspace{2cm} long range

\[
\frac{\langle I(u) I(u') \rangle}{\langle I(u) \rangle \langle I(u') \rangle} = C_0 \quad \text{infinite range} \quad \text{non-universal} \quad \text{short range}
\]

\[
\frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} - 1 = C_0
\]

In this study...

...we analyse the statistical distributions of the LDOS (or decay rates)

- **Single vs multiple** scattering
- **Near-field** interactions
- Impact on C_0 correlation
In this study...

...we analyse the statistical distributions of the LDOS (or decay rates)

- Single vs multiple scattering
- Near-field interactions
- Impact on C_0 correlation

Important to address fundamental questions as

- how to improve fluorescence lifetime imaging techniques,
- how to control light emission and propagation by multiple scattering?
System of punctual resonant scatterers

- **Polarisability** (can be a two-level atom far from saturation)
 \[\alpha(\omega) = \frac{-3\pi\gamma}{k^3(\omega - \omega_0 + i\gamma/2)} \]

- **Scattering cross-section**
 \[\sigma(\omega) = \frac{k^4}{6\pi} |\alpha(\omega)|^2 \propto \lambda^2 \]

- **Scattering mean-free path**
 \[\ell_B = [\rho\sigma(\omega)]^{-1} \]
Computation of the LDOS (or of the decay rate)

Electric field on the scatterer j for all source dipole orientations

\[
E_j = G_0(r_j, r_0, \omega) + \alpha(\omega) k^2 \sum_{n=1 \atop n \neq j}^{N} G_0(r_j, r_n, \omega) E_n
\]

- Emitter contribution
- Scatterers contribution
Computation of the LDOS (or of the decay rate)

Electric field on the scatterer j for all source dipole orientations

$$E_j = \sum_{n=1}^{N} G_0(r_j, r_n, \omega) + \alpha(\omega) k^2 \sum_{n \neq j}^{N} G_0(r_j, r_n, \omega) E_n$$

Emitter contribution

Scatterers contribution

Electric field at the source position

$$E(r_0) = \sum_{n=1}^{N} G_0(r_0, r_n, \omega) + \alpha(\omega) k^2 \sum_{n=1}^{N} G_0(r_0, r_n, \omega) E_n$$

$$S(r_0, r_0, \omega)$$
Computation of the LDOS (or of the decay rate)

Electric field on the scatterer j for all source dipole orientations

\[E_j = \underbrace{G_0(r_j, r_0, \omega)}_{\text{Emitter contribution}} + \alpha(\omega) k^2 \sum_{n=1}^{N} \underbrace{G_0(r_j, r_n, \omega) E_n}_{\text{Scatterers contribution}} \]

Electric field at the source position

\[E(r_0) = G_0(r_0, r_0, \omega) + \alpha(\omega) k^2 \sum_{n=1}^{N} G_0(r_0, r_n, \omega) E_n \]

Normalised decay rate

\[
\frac{\rho}{\rho_0} = 1 + \frac{6\pi}{k} \mathcal{I} \left[\operatorname{Tr} S(r_0, r_0, \omega) \right]
\]
Typical distribution

- **Wavelength** $\lambda = 630\,\text{nm}$
- **Cluster size** $R = 1.2\,\mu\text{m}$
- **Exclusion volume**
 $R_0 = 50\,\text{nm}$
- **Minimum distance between scatterers**
 $d_0 = 7.5\,\text{nm}$
- **Scattering mean-free path**
 $\ell_B = 1.9\,\mu\text{m}$
Regime 1: Multiple scattering

\[\rho < \rho_0 \]

\[P(\rho/\rho_0) \]

\[10^{-10} \]

\[10^0 \]

\[10^1 \]

\[10^2 \]

\[\rho/\rho_0 \]

\(\rho < \rho_0 \): collective interactions (multiple scattering)

Regime 1 Collective interactions

Distributions

Regime 1: Collective interactions

Distributions

Probability of having lifetimes larger than in vacuum (inhibition of the LDOS)

⇒ Interference effects (multiple interactions, finite-size effects)

Regime 1: Effective medium theory
Regime 1: Effective medium theory

- Lorentz-Lorenz theory

\[\epsilon_{\text{eff}}(\omega) = \frac{3 + 2\rho \alpha(\omega)}{3 - \rho \alpha(\omega)} \]

→ Independant scattering
Regime 1 Effective medium theory

- Lorentz-Lorenz theory

\[\varepsilon_{\text{eff}}(\omega) = \frac{3 + 2\rho\alpha(\omega)}{3 - \rho\alpha(\omega)} \]

→ Independant scattering

- Local effective permittivity

\[\varepsilon_{\text{eff}}(\omega) \]

→ Recurrent scattering
Regime 1 Effective medium theory

- **Lorentz-Lorenz theory**
 \[
 \varepsilon_{\text{eff}}(\omega) = \frac{3 + 2\rho\alpha(\omega)}{3 - \rho\alpha(\omega)}
 \]
 \rightarrow Independant scattering

- **Local effective permittivity**
 \[
 \varepsilon_{\text{eff}}(\omega)
 \]
 \rightarrow Recurrent scattering

- **Non-local effective permittivity**
 \[
 \varepsilon_{\text{eff}}(r, \omega)
 \]
 \rightarrow Correlations of the disorder
Regime 1: Average LDOS

Stronger scattering

Independant scattering
Regime 1: Average LDOS

Numerical results

Stronger scattering

- $k_0 \ell_B = 10$

- $k_0 \ell_B = 2$

Indepandant scattering

Recurrent scattering
Regime 2 Single scattering in near-field

\[\propto \rho^{-3/2} \]

1. \(\rho < \rho_0 \): collective interactions (multiple scattering)

2. \(\propto \rho^{-3/2} \): near-field interaction with one scatterer

Single interaction in near-field

\[\rho \propto \frac{1}{r^3} \frac{1}{r^3} = \frac{1}{r^6} \]

\[P(r) \propto r^2 \quad \Rightarrow \quad P(\rho) \propto \rho^{-3/2} \]

Regime 3: Multiple scattering in near-field

1. $\rho < \rho_0$: collective interactions (multiple scattering)

2. $\propto \rho^{-3/2}$: near-field interaction with one scatterer

3. $\rho > \rho_{\text{cut-off}}$: near-field interaction with more than one scatterer

Regime 3 Influence of correlations of disorder

$P\left(\frac{\rho}{\rho_0}\right)$

f is an effective volume fraction (correlation parameter)

d_0

Sensitivity to correlations of disorder (non-universal fluctuations)

Regime 3: Influence of correlations of disorder

Distributions

\[P(\rho/\rho_0) \]

\[\frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} - 1 \]

\[C_0 = \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} - 1 \]

Correlation parameter \(f \)

LDOS in a strongly scattering medium: two important messages!

Numerical identification of **different regimes:**
- Multiple scattering (collectives interactions)
- Near-field interactions with one or more scatterers

Decay rate or LDOS fluctuations \((C_0)\) are strongly affected by **near-field interactions** and can be seen as a probe of the local environment of the emitter.