We experimentally measure and study the monochromatic transmission matrix in optics. It allows light focusing and detection through a complex medium. Having access to the transmission matrix opens the road to a better understanding of light transport.

Transmission Matrix H

- **Input k**
- **Output k**
- **Input**
- **Output**
- **Random Matrix**
- **Identity Matrix**
- **Free space**
- **Scattering sample**

Information can be easily reconstructed using the experimentally measured data.

\[
E_{\text{out}}^{\text{ref}} = \sum_n h_n E_{\text{in}}^{\text{ref}}
\]

Measuring the TM

\[
E_{\text{out}}^{\text{ref}} = E_{\text{in}}^{\text{ref}}
\]

Statistical Properties of the TM

Tool: Singular Value Decomposition

\[
H = U \Lambda V^T
\]

Output basis

\[
\Lambda = \begin{bmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 & \lambda_2 & 0 & 0 \\
0 & 0 & \lambda_3 & 0 \\
0 & 0 & 0 & \lambda_4
\end{bmatrix}
\]

\(\lambda_i > 0\) represents the energy transmission through the ith channel. \(\Sigma \lambda_i \) corresponds to the total transmission for a plane wave.

We filter the reference speckle to remove those correlations and study the distribution of (normalized) singular values \(\rho(\lambda)\).

Amplitude of Reference Speckle induces correlation that modify the distribution.

Objective: Measuring the Transmission Matrix

Hypothesis: Coherence of the illumination, Stability of the Medium, Linearity

Setup

- **Input Control**
 - Spatial Light Modulator (SLM)
- **Output Detection**
 - CCD Camera

Image Detection

\[
E_{\text{out}}^{\text{obj}} = O \cdot E_{\text{in}}^{\text{ref}}
\]

Perfect reconstruction when the image is complex.

Conclusion and Perspectives

- Developed a faster setup (micromirror arrays, ferromagnetic SLMs) for biological purposes
- Study more complex media (Anderson localization, photonic crystals, Levy glasses...)

References